‘ Additive difference ’ models without additivity and subtractivity 1 D . Bouyssou
نویسنده
چکیده
This paper studies conjoint measurement models tolerating intransitivities that closely resemble Tversky’s additive difference model while replacing additivity and subtractivity by mere decomposability requirements. We offer a complete axiomatic characterization of these models without having recourse to unnecessary structural assumptions on the set of objects. This shows the pure consequences of several cancellation conditions that have often been used in the analysis of more traditional conjoint measurement models. Our models contain as particular cases many aggregation rules that have been proposed in the literature.
منابع مشابه
‘Additive difference’ models without additivity and subtractivity
This paper studies conjoint measurement models tolerating intransitivities that closely resemble Tversky’s additive difference model while replacing additivity and subtractivity by mere decomposability requirements. We offer a complete axiomatic characterization of these models without having recourse to unnecessary structural assumptions on the set of objects. This shows the pure consequences ...
متن کاملNontransitive models for decision making under uncertainty: A general framework and some applications Extended abstract
In a series of recent papers (Bouyssou and Pirlot, 2002, 2004a), we have proposed several conjoint measurement models that tolerate intransitive preferences. Their main characteristic is that they replace the additivity requirements used in most models designed to cope with intransitivities (e.g. the additive difference model proposed by Tversky (1969) and analyzed in Fishburn (1992) or the add...
متن کاملModelling Preferences
This chapter deals with a crucial step in the decision aiding process: the aggregation of the alternatives’ performances on each criterion in order to faithfully model the overall preference of the decision maker. The approach we follow is that of conjoint measurement, which aims at determining under which conditions a preference can be represented in a particular aggregation model. This approa...
متن کاملAdditivity of maps preserving Jordan $eta_{ast}$-products on $C^{*}$-algebras
Let $mathcal{A}$ and $mathcal{B}$ be two $C^{*}$-algebras such that $mathcal{B}$ is prime. In this paper, we investigate the additivity of maps $Phi$ from $mathcal{A}$ onto $mathcal{B}$ that are bijective, unital and satisfy $Phi(AP+eta PA^{*})=Phi(A)Phi(P)+eta Phi(P)Phi(A)^{*},$ for all $Ainmathcal{A}$ and $Pin{P_{1},I_{mathcal{A}}-P_{1}}$ where $P_{1}$ is a nontrivial projection in $mathcal{A...
متن کاملAn introduction to conjoint measurement without transitivity and additivity
This paper presents a self-contained introduction to a general conjoint measurement framework for the analysis of nontransitive and/or incomplete binary relations on product sets. It is based on the use of several kinds of marginal traces on coordinates induced by the binary relation. This framework leads to defining three general families of models depending on the kind of trace that they use....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004